Abstract—This technical paper introduces a novel UML Profile to construct parametric and logical types for the advancing model-driven engineer. Parametric types admit parametric polymorphism under a relational interpretation of types. We introduce parametric disjunctive and conjunctive types that lift operations from the object to type levels, constructively. We call them logical types. Logical types represent a fragment of intuitionistic higher order logic under the Brouwer-Heyting-Kolmogorov (BHK) interpretation. We specify their construction informally in UML sequence diagrams and their semantics and operations on them formally in intuitionistic logic, category theory and commutative diagrams.

We explain the advantages of parametric and logical types over the naive meta model approach and the approach to types and relations used in QVT, MOF and OCL. We provide semantics of parametric relational types as Kliesli categories; parametric logical data and type constructors as functors; and embedded product types as Hom-functors. We also provide the semantics of parametric and logical types as elementary and effective topoi. We prove the soundness and completeness of the relevant fragment of the BHK interpretation in natural deduction and extend the effective topos to an interpretation of realizability. A survey of the publicly available literature reveals no evidence of a similar approach for the advancing model-driven engineer. The approach is novel in its definition of the profile and application of algebraic types in model-driven engineering.

I. INTRODUCTION

Model-Driven engineers have sought to clarify, or formalize, the interpretation of standards and associated “models” through ontology, semantics and logic. Logic is sometimes seen as external to “modeling” and ontology a competitor. Integrating first order logic appears unattainable for practical purposes and type specification remains subordinate to set theoretic, class-based inheritance semantics.

Despite our best efforts, some desired outcomes remain out of reach. Proposals for unification through “meta modeling” such as the Meta Object Facility (MOF) naively underestimate the complexity of a required solution. Query View Transformation (QVT) remains largely unimplemented.

While we do not claim to solve the larger challenges of unification and transformation, this paper returns to foundations of programming languages in describing a technical approach using parametric and logical types we believe required to achieve the desired outcomes.

A. Overview

The rest of this paper is organized as follows. Section II reviews standards literature on parametric types as UML templates with references to programming languages and specification. Section III describes the formulation of logical types in a UML profile with data and type constructors. It contrasts parametric and logical type with a naive meta model approach and explains the technical advantage of parametric and logical types. Section IV illustrates the construction of and operations on logical types and describes their relational, set- and category-theoretic semantics. It contrasts parametric and logical types with QVT 1.3 and its dependency on MOF 2.5 and OCL 2.4 and explains the advantages of parametric and logical types over QVT. Section V explains the proof calculus and model theoretic interpretation of parametric and logical types in a fragment of Heyting algebra with natural deduction. We prove logical types are sound and complete. Section VI extends the interpretation of the parametric and logical types to realizability semantics in the effective topos. Section VI concludes and proposes future directions for our research.

II. PARAMETRIC TYPES

It well known that classes and data types are interpreted as sets of objects and values. [UML 2.5 18.3, UML 2.5 10.2] Less known is the interpretation of classes and types as relations. Reynolds first proposed to generalize homomorphisms from functions to relations for free algebras. His abstraction theorem introduces relational and parametric types. [Reynolds, 1983]

Consider the list L of ordered pairs L = [(0, True),(1, False)]. The relation inferred from the list is the parametric type Int Bool : the relation between the types of elements of ordered pairs in L. The counterintuitive juxtaposition of Int and Bool may cause suspicion. Consider the more familiar declaration List Nat, the list of natural numbers where List is parametrized by the type of its elements : Nat.

More generally, the expression T A is the type constructor T parametrized by the type parameter A. The set of type parameters may be called the carrier set of T. Type parameters are polymorphic allowing the substitution of monomorphic types like Bool, Int or Nat for A. Any parametric type T A can be interpreted as the relation T A = T A. UML allows parametrized class and data type by declaration [UML 2.5 9.3.1].

Despite limited support for parametric types in graphical notation, some class and data type diagrams allow depiction of type parameters. See Figure 1. Observe the familiar box representing a class or data type labeled T is annotated with a box at its top right outlined in dash style. The annotated box...
represents the binding $>$ of the parameter A to the template TA.

Figure 1. Parametric Type

Templates are model elements that are parametrized by other model elements. [UML 2.5 7.3.1] The term template originates in the C++ language which defines class and function templates. A template signature S on templatable elements TX defines a set of template parameters P bound to model elements $S_{TX} > \{TX : p \in P\}$.

We read from Figure 1, the template signature $S_{TA} > \{TA : A \in P\}$ binds parameter A to templateable element TA. The parameters in the signature are the “formal parameters” for which “actual parameters” will be substituted in a binding. Given a substitution, lets say of monomorphic type Int for parameter A, an operational semantics allows for instantiation of relational type $TInt$.

III. LOGICAL TYPES

Current standards specify operations and operators in an object language. A class could define a boolean operation that implements bitwise boolean ($\&$, $||$) or boolean logical ($\&\&$, $\|\|$) operators. [UML 2.5 9.6] OCL defines the semantics of the following boolean operators for basic types (and, or, xor, implies, not). [OCL 2.4, A 2.1.3]

“Meta models” typically characterize inheritance hierarchies of imperative programs in the abstract syntax of a “meta language.” The meta language might specify a class or type. The object language inherits properties and operations and may represent the instance of the class or value of type, or a specialization at a level below the meta language.

Figure 2 illustrates a naive approach to type specification taken from an Object Management Group submission. Type semantics were imputed to be a class-like structure with properties. Constructors and operations were disallowed. Values comprised the extent imputed to be set. Union and Intersection contained no properties other than those contained in Type. Generalization implied intensional equality. No other model element specified the semantics of union or intersection.

We conservatively extend the use of metamodels with parametric types that introduce a typed logic into our meta language. We call them logical types because they lift logic from the object language to the type system. See Figure 3.

Observe the parametrized type $Pair(A,B)$. $Pair(A,B)$ lifts conjunction into the type system. $Pair(A,B)$ has two type parameters A and B representing the conjunctive operands. Type parameters are polymorphic and we construct a value p of $Pair(A,B)$ from constructor $Pair(a : A, b : B)$ substituting values of monomorphic types for polymorphic type parameters. As expected, the value p includes references to both operands reduced to values of monomorphic types, or their references. Notice that $Pair(A,B)$ has two properties $lPrj : A$, the left projection, and $rPrj : B$, the right projection, the types of which are the type parameters A and B respectively. References to values of monomorphic types for each respective operand is bound during construction. The operation fst returns the binding of type parameter A. snd returns the binding of type parameter B. $Pair(A,B)$ may also be called product.

Now that we have introduced conjunction, we likewise lift disjunction into the type system with the parametric type $Either(L,R)$. A value e of $Either(L,R)$ also has two type parameters L and R representing the disjunctive operands. Notice the names of the two type parameters L and R reflect the mnemonics left and right. Construction of $Left(L)$ and $Right(R)$ return their respective binding to type $Either(L,R)$ such that the value e has a reference to only one of the operands, the other remains unevaluated. $Either(L,R)$ is abstract and construction proceeds by binding a value of a
monomorphic type in the constructor of either $Left(L)$ or $Right(R)$. $Left(L)$ and $Right(R)$ inherit boolean operations that test for identity. Either $Left(L, R)$ may also be called sum or coproduct.

We can reason constructively using the type system with logical types. Reasoning constructively means providing a witness to the proof of a proposition. [Wadler 2015] Consider a propositional logic with negation and implication. A constructive proof of De Morgan’s Law $\neg(P \land Q) \iff (\neg P) \lor (\neg Q)$ with parametric and logical types would have the type $Pair(A, B) \rightarrow Not(Either(Not A), (Not B))$. See Figure 7.5.3.1. Given predicate $Not a = forall. a \rightarrow Bool$, witness is evaluated and the proof given by pattern matching on the structure of the data constructors $Left id$ and $Right id$ and their application to the respective arguments in $Pair(x, y)$.

Types in UML have either value specifications [UML 2.5, 8.6.22] derived from kinds of value classifiers [UML 2.5, 7.5.3.1] or are primitive in that they have no notation [UML 2.5, 21.3]. Value specifications are described as parameterable elements that may be exposed as a formal template parameter and provided as the actual parameter in the binding of a template. Primitive types are declared rather than constructed and most often constrain attribute values in a user defined class.

The notion of type and data constructors is absent from the UML 2.5 and other OMG standards. We extend the standards with a UML profile that allows type construction from type $UML 2.5$ and other OMG standards. We extend the standards class and most often constrain attribute values in a user defined class.

IV. CONSTRUCTION OF AND OPERATIONS ON PARAMETRIC AND LOGICAL TYPES

Parametric types are called generics in mainstream programming languages. This section provides the semantics of and illustrates the construction of and operations on parametric and logical types for model-driven engineering. It also explains their technical advantages over types and relations in QVT 1.3 and its dependencies on MOF 2.5, OCL 2.4.

An incomplete analysis reveals MOF 2.5 does not import UML Templates. OCL 2.4 defines TemplateParameterType without reference to UML Templates and admits only the informal semantics that TemplateParameterType “refer[s] to generic types” and is “used in the standard library to represent the parameterized collection operations.” [OCL 8.2] OCL collections are not relational, they are set theoretic. [OCL 11.6] Collections are the only parametric types in the OCL standard library. [OCL 11] Further, OCL informally claims the collection type “is actually a template type with one parameter.” [OCL 11.6] OCL semantics described in UML do not differentiate values or evaluations for collection types as template parameter types. OCL values and evaluation packages do not admit function or relation. [OCL 10, 11] QVT 1.3 claims a “user friendly Relations meta-model and language” specified in natural language and first order predicate logic and a “standard transformation for any relations model to a trace models and a Core model with equivalent semantics.” [QVT 6.1] QVT also defines TemplateParameterType without reference to UML Templates. It does not allow user defined

$\neg a \equiv forall a \rightarrow Bool$, witness is evaluated and the proof given by pattern matching on the structure of the data constructors $Left id$ and $Right id$ and their application to the respective arguments in $Pair(x, y)$. Types in UML have either value specifications [UML 2.5, 8.6.22] derived from kinds of value classifiers [UML 2.5, 7.5.3.1] or are primitive in that they have no notation [UML 2.5, 21.3]. Value specifications are described as parameterable elements that may be exposed as a formal template parameter and provided as the actual parameter in the binding of a template. Primitive types are declared rather than constructed and most often constrain attribute values in a user defined class.

The notion of type and data constructors is absent from the UML 2.5 and other OMG standards. We extend the standards with a UML profile that allows type construction from type $UML 2.5$ and other OMG standards. We extend the standards class and most often constrain attribute values in a user defined class.

IV. CONSTRUCTION OF AND OPERATIONS ON PARAMETRIC AND LOGICAL TYPES

Parametric types are called generics in mainstream programming languages. This section provides the semantics of and illustrates the construction of and operations on parametric and logical types for model-driven engineering. It also explains their technical advantages over types and relations in QVT 1.3 and its dependencies on MOF 2.5, OCL 2.4.

An incomplete analysis reveals MOF 2.5 does not import UML Templates. OCL 2.4 defines TemplateParameterType without reference to UML Templates and admits only the informal semantics that TemplateParameterType “refer[s] to generic types” and is “used in the standard library to represent the parameterized collection operations.” [OCL 8.2] OCL collections are not relational, they are set theoretic. [OCL 11.6] Collections are the only parametric types in the OCL standard library. [OCL 11] Further, OCL informally claims the collection type “is actually a template type with one parameter.” [OCL 11.6] OCL semantics described in UML do not differentiate values or evaluations for collection types as template parameter types. OCL values and evaluation packages do not admit function or relation. [OCL 10, 11] QVT 1.3 claims a “user friendly Relations meta-model and language” specified in natural language and first order predicate logic and a “standard transformation for any relations model to a trace models and a Core model with equivalent semantics.” [QVT 6.1] QVT also defines TemplateParameterType without reference to UML Templates. It does not allow user defined
parametric types and its only parametric types are those in the standard library [QVT 8.2.2.26] Its relations language specifies homomorphisms and constraints rather than relations. [QVT 7.1, 7.2] The QVT standard library for relations is the OCL standard library. [QVT 7.12] Although the standard library for operational mappings defines operations that return parametric types, the types returned are set theoretic. Operations do not return function or relation. [QVT 8.3.4 - 8.3.18]

Though incomplete, our analysis reveals QVT, MOF and OCL substantially reject Reynolds’ approach to abstraction and parametric types. [Reynolds 1983] They are not higher order. Their specification is informal, object inheritance enhanced with object-level operations. There is no formal object calculus despite its availability. [Abadi 1995] Transformation is ad-hoc rather than parametrically polymorphic. Its claim to relations reveals homomorphisms and constraints rather than relational semantics. And its informal collections only approach to parametric types restricts their application significantly less than even mainstream programming languages like Java and C#.

QVT 1.3 depends on MOF 2.5 and OCL 2.4. Despite the early optimism surrounding the standardization of QVT, its authors report only two discouraging implementations of QVTr, its relations language, and no implementations of QVtc, its core language. Most revealing for an OMG standard, there are no commercial implementations, since 2002. In response, Willink proposes three new intermediate languages and a dependency on the Action Language Foundation for UML (ALF). In his “progressive architecture approach.” [Willink 2016] We do not discuss the progressive architecture approach or ALF.

Our novel UML profile offers technical advantages over types and relations in QVT, MOF and OCL as explained in the examples below. Example A : Left Disjunction illustrates the binding of a monomorphic type to a polymorphic type in the Left disjunct using a set theoretic interpretation of the parameters to build intuition. Example B : Conjunction proceeds with relations on Pair in the set theoretic function space where the parameters PlusOne and Nat. Example C : Composition and Parametricity provides insight into the effective use of abstraction rather than type construction. We demonstrate composition of parametric and logical types with polymorphic type variables and theorems induced by parametricity. [Wadler 1989] Example D : Categorical Semantics provides an incomplete categorical semantics from earlier examples. We explain 1) relational type constructors in Rel the Kleisli category of Set; 2) functors on data and type constructors; 3) the embedding of products in Set, the category of sets with the Hom functor; and 4) an incomplete examination of elementary and effective topos using relational type constructor Pair with function and natural numbers parameters.

A. Left Disjunction : (Left ⇔ Bool) → (Either ⇔ ((Left ⇔ Bool) ⇔ R))

Given parametrized data constructors Left(L) and Right(R) and type constructor Either(L, R), using

Reynolds showed that the standard interpretation of the first order typed lambda calculus in the category of sets cannot be extended to an interpretation of the second order typed lambda calculus. [Reynolds, 1984] However, his notion of what constitutes the extension of a second order from first order interpretation was later narrowed to show the exclusion was due to the non-constructive nature of sets. Hyland showed it possible for elementary toposes to embed the second order lambda calculus in completely standard way. [Hyland 1982]

An elementary topos is an interpretation of higher order constructive logic in which polymorphic types are interpreted as sets, functions interpreted as exponential and products interpreted as indexed collections. Pitts showed the completeness and full embedding of the second order typed lambda calculus in a topos. [Pitts 1987] Note this result does not contradict Reynolds due to the absence of the Law of Excluded Middle in intuitionistic logic. We discuss the effective topos below reminding the reader that logical types are constructive and intuitionistic.
B. Conjunction : (Pair \iff ((A \times B) \iff (A' \times B'))) \rightarrow (Pair \iff (A \times B))

Recall the carrier set of Pair< A, B > is the product A \times B and that pairs are related if their components are related. The relation A \times B : (A \times B) \iff (A' \times B') is defined by ((x, y), (x', y')) \in A \times B \iff (x, x') \in A and (y, y') \in B. We examine the special case where given (f \times g) \iff (x, y) \rightarrow (fx, gy) again under a set theoretic interpretation of the parameters. [Wadler 1989] See Figure 6.

Construction proceeds with the substitution of both monomorphic actual parameters for both polymorphic formal parameters in the data constructor resulting in the binding Pair \iff ((PlusOne \iff (T \iff R)) \times (Nat \iff A)). Type construction proceeds similarly resulting in the binding of type Pair \iff ((PlusOne \iff (Nat \iff A)) \times (Nat \iff A)). Note the result type p in familiar Java generics syntax is Pair<PlusOne<Nat?,?,Nat.Suc<Nat?,?,>>, Nat?>.

Recall the evaluation of Pair \iff (PlusOne \iff (T \iff R)) \times (Nat \iff A) is set theoretic function application resulting in the product (R = Suc (Nat A), T = Nat A) where T < R.

C. Composition and Parametricity

While construction of monomorphic types from polymorphic constructors satisfies our intuition of building something, operations on polymorphic functions can be equally useful. Consider composition defined as \circ : (b \to c) \to (a \to b) \to a \to c. Polymorphic functions on parametric and logical types compose such that f \circ g = f(g(x)). Given functions prodSum :: Pair a (Either c b) \rightarrow Either (a, c) (a, b) and sumProd :: Either (a, c) (a, b) \rightarrow Pair a (Either c b) \Rightarrow \{ (prodSum \circ sumProd) :: Either (a, c) (a, b) \rightarrow Either (a, c) (a, b) , (sumProd \circ prodSum) :: Pair a (Either c b) \rightarrow Pair a (Either c b) \}. See Figure 8.

Walder observed the composition of polymorphic functions with monomorphic functions induced theorems for free. [Wadler 1989] Given a polymorphic function fn :: Left x \rightarrow
Left x, the monomorphic functions ord :: Char → Int and chr :: Int → Char and the functor mapEither :: (a → c) → (b → d) → Either a b → Either c d we can for example state the following theorem: (mapEither ord chr o fn) = (fn o mapEither ord chr).

Recall from Figure 6 the second monomorphic parameter chr is not used by data constructor Left.

D. Categorical Semantics

Goguen first proposed the explicit junction between computer science and category theory. [Goguen, 1989] The Categorical Manifesto [Goguen, 1989] promulgates seven dogmas and is called the retraction of Pair.

The Kleisli category for Set is the type constructor for Pair⇐⇒Pair functor and T monad

A category whose objects are sets and whose morphisms are Left x, the monomorphic functions ord :: Char → (a,c) → (b,d) to

engineering in adherence to our belief in the manifesto.

exposition of parametric and logical types to model driven categories of particular interest to an incomplete and preliminary for using category theory to the faithful. We examine the categorical Manifesto [Goguen, 1989] promulgates seven dogmas

Given a monad T = (T, μ, η) in Cat where T : C → C, μ : TT → T and η : IdC → T, the Kleisli category CT of the monad T is the subcategory of the Eilenberg-Moore category C^T on the free T-algebras. If U : C → C is the forgetful functor and F : C → C^T is the free algebra functor, then the Kleisli category is the full subcategory in the image of F. Rel is the Kleisli category for Set. So for parametric type constructor Pair ⇐⇒ A×B, we interpret Pair as the Kleisli category on the carrier set A × B. See Figure 9. Note that F : C → C^T is the type constructor for Pair(A,B) which wraps A × B in Pair. It is called the section of μ. μ : TT → T unwraps A×B and is called the retraction of F where μ o F = id_{A×B}.

Figure 9. Section and Retraction

\[
\begin{array}{c}
A \times B \xrightarrow{F : C \rightarrow C^T} \text{Pair} \iff (A \times B) \\
\end{array}
\]

\[
\begin{array}{c}
id_{A \times B} \\
\mu : TT \rightarrow T
\end{array}
\]

\[
\begin{array}{c}
A \times B \\
\end{array}
\]

3) Category of Products in Pair(A,B): Recall that Pair(A,B) is the type constructor on the product of two sets A and B. The Cartesian product of sets A × B is the set of all ordered pairs (a,b) whose first coordinate is a and second is b. Also recall Pair(A,B) is equipped with operations A fst() and B snd() from which we recover the first and second coordinates of pairs respectively. Given the category P with objects A and B, the product A × B is an object in P along with the arrows π_A : A × B → A and π_B : A × B → B satisfying the universal mapping property that for every object P and pair of morphisms F_A and F_B there is a unique morphism f_{A,B} : P → A × B such that the following diagram commutes. π_A and π_B are the projections of A × B from which we recover the respective objects comprising the product.

Figure 11. Bifunctor Either

\[
\begin{array}{c}
\text{ Either a b → Either c d is called a sum type or coproduct.}
\end{array}
\]

More generally a bifunctor B is simply a functor whose domain is the product of two categories. B : L × R → T Recall the left and right disjuncts from Example A. The combined Left and Right disjuncts comprise a bifunctor from the respective data constructors to type constructor Either. See Figure 10. Notice the function mapEither in Haskell syntax takes objects in Either a b to objects in Either c d though the assignment operation and the arrows of Either a b to the arrows of Either c d through function application. The result type of functor mapEither :: (a → c) → (b → d) → Either a b → Either c d is called a sum type or coproduct.

Figure 10. Coproduct

\[
\begin{array}{c}
\text{Nat a} \\
\text{Zero} \\
\text{Suc a}
\end{array}
\]

\[
\begin{array}{c}
f_L \\
f_R \\
f_{L,R}
\end{array}
\]

\[
\begin{array}{c}
i_L \\
i_R \\
i_{L,R}
\end{array}
\]

\[
\begin{array}{c}
\text{Nat a} \\
\text{Zero (+) Suc a}
\end{array}
\]
Given any category C with any objects A and B we call the set of arrows $Hom(A,B) = \{ f \in C \mid f : A \to B \}$ its Hom-set. $Hom(A,B)$ is an object S in Set, the category of sets with arrows $h : S \to S'$. Any arrow $g : B \to B'$ in C induces a function $h : S \to S'$ in Set such that $h \circ f$ determines the covariant representable functor $Hom(A,-) : C \to Set$. [Awodey 2005] Further any object P and pair of arrows $p_1 : A \to B$ and $p_2 : B \to B'$ determine an element (p_1,p_2) of the set $Hom(P,A) \times Hom(P,B)$ in Set. And for any object P in a category C with products the covariant representable functor $Hom_C(P,-) : C \to Set$ preserves products if given functor $F : C \to D$ and $A \times B$ in C and $F(A \times B)$ in D, then $F(A \times B) \to F(A \times F.B)$. [Awodey 2005]

The category of sets Set helps build intuition in our categorical semantics. The empty set \emptyset serves as the initial object. Every singleton $\{\ast\}$ is a terminal object. The product in Set is the Cartesian product of sets. The categorical product of sets is complete and co-complete meaning all small limits and co-limits exist. We have constructed the functor category Set^C from product category C.

4) Elementary and Effective Topoi: Categorical interpretation of topoi originated in topological spaces. The abstract properties of a topos Top are those of Set with an internal logic. That internal logic is intutionistic and higher order thereby inducing both a Heyting Category and providing the categorical semantics of the logic imputed to parametric logical types. We de-emphasize the geometric interpretation of Top in favor of the logical one.

An elementary topos Top is a category which has finite limits, is Cartesian closed and has a subobject classifier. A subobject classifier in a category C with finite limits is a monomorphism $true : \ast \to \Omega$ from the terminal object such that for every monic $m : U \to X$ in C there is a unique arrow $\chi_U : X \to \Omega$ such that the following pullback diagram commutes. See Figure 13.

The object Ω is called the object of truth values, it contains the generic subobject $true$ and $\chi_U : X \to \Omega$ is called the characteristic map of the subobject. Every monic $m : U \to X$ arises as a pullback of the generic subobject along χ_U. The pullback of a monic is a monic and because there is only one arrow $\ast \to \Omega$ then χ_U is a monic. Subobjects generalize the notion of subsets. In the category of sets the two element set $\{1\}$ is the truth object Ω. The subset classifier $t : \ast \to \Omega$ identifies element t as the generic subset. And given the subset $S \subseteq X$ the characteristic function $\chi_S : X \to \Omega$ is defined as $\chi_S(x) = t$ if $x \in S$ and $\chi_S(x) = f$ if $x \notin S$. $!$ is the function from any subset to \ast in Set.

We derived the functor category Set^C from the product of sets in type constructor $Pair \iff A \times B$. Any elementary topos such as Set is cartesian closed. Any category C is cartesian closed if it has a terminal object \ast and for all objects A and B both a product $A \times B$ and an exponential B^A. Any singleton $\{\ast\}$ in Set^C is the terminal object. Recall the covariant representable functor $Hom_C(P,-) : C \to Set$ preserves products $A \times B$ in set as $F(A \times B) \to F(A \times F.B)$. The exponential B^A is the set of all functions $B^A : Hom(A,B) = Hom(A,B) \to Hom(A,B')$ in Set^C.

Finally, recall that in addition to our UML profile we define $Unit$ as a singleton class with one value $Unit$ and \bot the abstract class with no values. See Figure 7. $Unit$ is the terminal object and \bot the initial object allowing finite limits and colimits in elementary topos. $Unit$ may also be named \ast or 1 as above.

Recall from Example B, the product from which the functor category Set^C is derived is $(PlusOne \iff (T \iff B) \times (Nat \iff A))$. The effective topos Eff is an example of an elementary topos with a natural numbers object. Eff is an environment for higher order recursion where the functor $Hom(1,-)$ preserves the internal logic of Eff in Set^{Eff}.

A natural numbers object in a topos Top with a terminal object 1 is an object \mathbb{N} equipped with an arrow $zero : 1 \to \mathbb{N}$ and an arrow $suc : \mathbb{N} \to \mathbb{N}$ such that for every other diagram $1 \xrightarrow{1} A \xrightarrow{suc} A$ there is a unique morphism $u : \mathbb{N} \to A$ such that the following diagram commutes. See Figure 14.
Logical types comprise a fragment of Heyting algebra (HA). HA is a formalization of the BHK interpretation of intuitionistic logic. HA is a bounded lattice with join $A \lor B$ and meet $A \land B$ operations. It admits \top, aka true, \bot aka absurd and implication $A \implies B$. True is constructed, absurd is not. We will not use the universal \forall or existential \exists quantifiers.

HA does not admit the law of excluded middle, therefore the contradiction $A \land \neg A$ is not a rule of intuitionistic logic. We follow Pfenning’s approach to intuitionistic natural deduction. [Pfenning 2004]

V. Proof Calculus for Logical Types

Although logical types offer certain advantages over the naive meta model approach, we need to assess their use in a proof system. We want our proof system to be sound and complete. Given introduction and elimination rules our system is sound when from the introduction rules we prove the elimination rules do not invalidate the introduction rules by deriving new consequences. The system is complete when we can reconstruct arbitrary proofs created from the introduction rules using the elimination rules without loss of information.

V. Proof Calculus for Logical Types

Although logical types offer certain advantages over the naive meta model approach, we need to assess their use in a proof system. We want our proof system to be sound and complete. Given introduction and elimination rules our system is sound when from the introduction rules we prove the elimination rules do not invalidate the introduction rules by deriving new consequences. The system is complete when we can reconstruct arbitrary proofs created from the introduction rules using the elimination rules without loss of information.

A. Introduction and Elimination Rules

A verificationist approach begins with definitions and proves the definitions from introduction rules. We proceed by induction over the structure of the data and type constructors using natural deduction. Natural deduction is a proof calculus with a line denoting an inference and introduction and elimination rules to its right. With introduction rules we read the inference from the bottom to the top. With elimination rules we read from the top to bottom. Labeled propositions which encode an interpretation are said to be judgments.

Pair Introduction: We read the judgment on the bottom to infer the judgment(s) on top using the rule to prove the inference. Here the first judgment is the data constructor Pair (A,B) true. The introduction rule (Pair) reads that if judgment Pair (A,B) is true, then judgment A must be true and if judgment Pair (A,B) is true then judgment B must be true. We verify the inference holds in a model theoretic interpretation.

$$
\begin{array}{c}
A \text{true} \\
B \text{true} \\
\hline
\text{(Pair)} \ I
\end{array}
$$

Pair Elimination: We read the judgments on top to infer the judgments on the bottom using each elimination rule to prove the inference. The first judgment is again the data constructor Pair (A,B). By elimination rule (Pair) E_1, we infer the judgment A true. Likewise, by elimination rule (Pair) E_2, we infer the judgment B true.

$$
\begin{array}{c}
\text{Pair} (A,B) \text{true} \\
\hline
\text{(Pair)} \ E_1
\end{array}
\quad
\begin{array}{c}
\text{Pair} (A,B) \text{true} \\
\hline
\text{(Pair)} \ E_2
\end{array}
$$

Either Elimination: A pragmatist approach proceeds by inference from how a judgment is used. Observe the type constructor Either (L,R) true on top. For disjunction we need only to prove one data constructor is true while preserving a model theoretic interpretation. To its right we define two hypothetical judgments. One, a proof of C given data constructor Left true. Second, a proof of C given Right true. We read the judgment Either (L,R) true to mean there are no interpretations where either Left is false or Right is false. Elimination rule (Either) $E_{\perp,\top}$ reads that if we have a proof of C from Left true than we can conclude C. Or if we have a proof of C from Right true we can conclude C. Variables x and y are exclusive to the hypothetical judgment in which they are introduced.

$$
\begin{array}{c}
\text{Either} \ (L,R) \text{true} \\
\hline
\text{Left} \ (L) \text{true} \\
\text{Right} \ (R) \text{true} \\
\hline
\text{Either} \ (L,R) \text{true} \\
\end{array}
$$
Either Introduction: Notice it would be unsound to infer judgment $\text{Left } \text{true}$ from judgment $\text{Either } (L, R) \text{ true}$ in every model theoretic interpretation of classical logic. From judgment $\text{Either } (L, R) \text{ true}$ on the bottom we read (Either) I_1 to mean that there is at least one model theoretic interpretations of Left true in intuitionistic logic, while recalling we do not admit the law of excluded middle. (Either) I_2 likewise means that from judgment Either (L,R) true there is at least one model theoretic interpretation in intuitionistic logic for Right true.

Either Introduction : Notice it would be unsound to infer judgment Left true from judgment Either (L,R) true in every model theoretic interpretation of classical logic. From judgment Either (L,R) true on the bottom we read (Either) I_1 to mean that there is at least one model theoretic interpretations of Left true in intuitionistic logic, while recalling we do not admit the law of excluded middle. (Either) I_2 likewise means that from judgment Either (L,R) true there is at least one model theoretic interpretation in intuitionistic logic for Right true.

$\begin{array}{c}
\text{Left true} \\
\text{Right true}
\end{array}
\quad
\begin{array}{c}
\text{Either (L,R) true} \\
\text{Either (L,R) true}
\end{array}
\quad
\begin{array}{c}
\text{C true} \\
\text{Either } E^{x,y}
\end{array}
$

B. Sound and Completeness Justification

We prove soundness by reduction and completeness by expansion. Reduction checks that no new consequences are discovered when applying the elimination rules to the proofs derived from the introduction rules: we do not gain information. Complete checks that we do not lose information when reconstructing an arbitrary proof from the elimination rules. Sound and complete checks are called justifications.

Pair Reduction: Reading the judgment from type constructor $\text{Pair } (A,B) \text{ true}$ assume arbitrary proofs \mathcal{D} of A and \mathcal{E} of B from the pair introduction rule (Pair) I. By elimination rule (Pair) E_1 we reduce $\text{Pair } (A,B) \text{ true}$ to $A \text{ true}$, the subject of proof \mathcal{E}. Likewise by elimination rule (Pair) E_2 we reduce $\text{Pair } (A,B) \text{ true}$ to $B \text{ true}$, the subject of proof \mathcal{E}. Our justification is sound. We have used all the elimination rules to the introduction rule and we have gained no information. Soundness is local to the instant proof.

$\begin{array}{c}
\mathcal{D} \\
\text{A true} \\
\text{B true}
\end{array}
\quad
\begin{array}{c}
\mathcal{E} \\
\text{Pair(A,B) true} \\
\text{A true}
\end{array}
\quad
\begin{array}{c}
\text{Either (Either) I}_1 \\
\text{Either (Either) I}_2
\end{array}
\quad
\begin{array}{c}
\mathcal{D} \\
\text{A true} \\
\text{B true}
\end{array}
\quad
\begin{array}{c}
\mathcal{E} \\
\text{Pair(A,B) true} \\
\text{B true}
\end{array}
$

Pair Expansion: From an arbitrary proof \mathcal{D} of type constructor $\text{Pair } (A,B) \text{ true}$ we expand elimination rules (Pair) E_1 and (Pair) E_2 to prove A true and prove B true from introduction rule (Pair) I. We read from the top left that from elimination rule (Pair) E_1 we can conclude A true from data constructor Pair (A,B) true. Expansion allows “copies” to check completeness of expansion, therefore we use a copy of arbitrary proof \mathcal{D} concluding B true from elimination rule E_2. We then verify that no information list lost by concluding both A true and B true from the introduction rule Pair (A,B) true and our local expansion is justified.

$\begin{array}{c}
\mathcal{D} \\
\text{Pair(A,B) true} \\
\text{Pair(A,B) true}
\end{array}
\quad
\begin{array}{c}
\mathcal{E} \\
\text{Pair(A,B) true}
\end{array}
\quad
\begin{array}{c}
\mathcal{F} \\
(\text{Either)I}_1 \\
(\text{Either)I}_2
\end{array}
$

Either Reduction: Recall introduction rule (Either) I_1 justifies a conclusion that under a model theoretic interpretation of intuitionistic logic there is at least one case where data constructor Left is true from type constructor Either (L,R). We name this proof \mathcal{D}. While preserving a model theoretic interpretation we require only proof of C from either data constructor Left or data constructor Right. By elimination rule (Either) $E^{x,y}$ we reduce one of the two hypothetical proofs to C. We choose the Left judgment, arbitrarily named \mathcal{E}. Similarly in our second case we provide proof of C from judgment Right arbitrarily named \mathcal{F}. Our local reduction has gained no information and local reduction is sound. Note that due to the expanded size of the proofs we elide true from judgments in this and all future proofs without loss of information.

$\begin{array}{c}
\mathcal{D} \\
\text{Left} \\
\text{A true}
\end{array}
\quad
\begin{array}{c}
\mathcal{E} \\
\text{Either (Either) I}_1 \\
\text{Either (Either) I}_2
\end{array}
\quad
\begin{array}{c}
\mathcal{F} \\
\text{C true}
\end{array}
\quad
\begin{array}{c}
\mathcal{D} \\
\text{Right} \\
\text{B true}
\end{array}
\quad
\begin{array}{c}
\mathcal{E} \\
\text{Either (Either) } E^{x,y}
\end{array}
\quad
\begin{array}{c}
\mathcal{F} \\
\text{C true}
\end{array}$
realizes the sentences ψ. [Vermeeren 2009] Given the non-standard truth values HA values of P define this subset M in a Heyting algebra I satisfies the model. [Tarski 1944] A model-driven engineer to further refine their approach to model specification and interpretation. Introducing realizability in the effective topos exposes engineers to the computability theory underlying constructive or intuitionistic logic. Our main thrust is to contrast non-standard truth values in a Heyting algebra with a classical interpretation of first order logic.

We claim the construction of a type from a value is a witness satisfying the proof of a proposition. Kleene proposed the constructive proof of a proposition in the Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic could be formulated in terms of numerical codes that are effectively computable. [Kleene 1945] Given a Godel numbering in $n \in \mathbb{N}$ and recursive function $f(n)$, then $f(n)$ is the result of applying f to n. The result $f(n)$ is a realizer. And we say that $f(n)$ realizes formula A in a Heyting algebra or is a realizer of the BHK interpretation. We make no claims of efficiency in Godel numbering.

Effective topoi are elementary topoi with a natural numbers object and an internal logic with finite limits and co-limits. The natural numbers object is recursive. Recall the internal logic of the effective topos is also a Heyting algebra. Also recall model theory based in classical logic admits an interpretation of intuitionistic logic could be formulated in terms of numerical codes that are effectively computable. [Kleene 1945] Given a Godel numbering in $n \in \mathbb{N}$ and recursive function $f(n)$, then $f(n)$ is the result of applying f to n. The result $f(n)$ is a realizer. And we say that $f(n)$ realizes formula A in a Heyting algebra or is a realizer of the BHK interpretation. We make no claims of efficiency in Godel numbering.

Recall the subobject classifier $true : * \to \Omega$ from the terminal object to the object of truth values. Under a realizability interpretation the subobject classifier becomes $(f(n) \psi) : * \to \Omega$. Likewise the characteristic function $\chi_U : X \to \Omega$ becomes $\chi_U = (f(n) \psi)$ if $n \in P(\mathbb{N})$ and $\chi_U = \bot$ otherwise.

VI. REALIZABILITY IN THE EFFECTIVE TOPOS

This section introduces realizability in the effective topos to the model-driven engineer. Ontology and fragments of first order and description logics often challenge the advancing model-driven engineer to further refine their approach to model specification and interpretation. Introducing realizability in the effective topos exposes engineers to the computability theory underlying constructive or intuitionistic logic. Our main thrust is to contrast non-standard truth values in a Heyting algebra with a classical interpretation of first order logic.

We claim the construction of a type from a value is a witness satisfying the proof of a proposition. Kleene proposed the constructive proof of a proposition in the Brouwer-Heyting-Kolmogorov (BHK) interpretation of intuitionistic logic could be formulated in terms of numerical codes that are effectively computable. [Kleene 1945] Given a Godel numbering in $n \in \mathbb{N}$ and recursive function $f(n)$, then $f(n)$ is the result of applying f to n. The result $f(n)$ is a realizer. And we say that $f(n)$ realizes formula A in a Heyting algebra or is a realizer of the BHK interpretation. We make no claims of efficiency in Godel numbering.

Effective topoi are elementary topoi with a natural numbers object and an internal logic with finite limits and co-limits. The natural numbers object is recursive. Recall the internal logic of the effective topos is also a Heyting algebra. Also recall model theory based in classical logic admits an interpretation of intuitionistic logic could be formulated in terms of numerical codes that are effectively computable. [Kleene 1945] Given a Godel numbering in $n \in \mathbb{N}$ and recursive function $f(n)$, then $f(n)$ is the result of applying f to n. The result $f(n)$ is a realizer. And we say that $f(n)$ realizes formula A in a Heyting algebra or is a realizer of the BHK interpretation. We make no claims of efficiency in Godel numbering.

Recall the subobject classifier $true : * \to \Omega$ from the terminal object to the object of truth values. Under a realizability interpretation the subobject classifier becomes $(f(n) \psi) : * \to \Omega$. Likewise the characteristic function $\chi_U : X \to \Omega$ becomes $\chi_U = (f(n) \psi)$ if $n \in P(\mathbb{N})$ and $\chi_U = \bot$ otherwise.

VII. CONCLUSION

Parametric and logical types offer technical advantages over both the naive approach to meta models and QVT and its dependencies on MOF and OCL. Parametric types allow parametric polymorphism following Reynolds’ abstraction theorem. Parametric types may be formally specified in type and category theory. They are composable and induce theorems that may be proven. We have shown how UML Templates allow the specification of parametric types in UML.

Logical types lift logic from the object language to the type system, constructively. Our novel UML profile of data types and type constructors and a few utility classes allowed an interpretation of intuitionistic logic. We specified informal semantics in sequence diagrams and formal semantics in type and category theory and demonstrated their realizability in the effective topos. We proved their soundness and completeness in a fragment of a Heyting algebra using natural deduction.

There’s no shortage of future work following from parametric and logical types in model-driven engineering. Standardizing the profile may be of interest both to researchers in the algebraic data types community who seek industrial relevance for their research and model-driven engineers seeking an alternative to first order valuations of classical logic, description logic or ontology. Further technical work abounds. Subtopoi of the effective topos appear relevant as is homotopy. Further developing realizability in the effective topos will allow model-driven engineers to better contrast classical model theory with realizability. And further developing the BHK interpretation and its extension to dependent types as well as a proof calculus in the sequent calculus also appears relevant.

ACKNOWLEDGMENT

The author would like to thank George Thomas whose friendship and support made this paper possible long before it began.